5G를 위한 광액세스망 기술

2017년 6월 7일

정철석 (chung@etri.re.kr)

Contents

5G & C-RAN

전송 용량 저감 기술
광액세스 기술
Indoor Analog RoF 기술
5G 광액세스망 관계? 광통신?
5G Key Services

Enhanced Mobile Broadband
- High data rate
 - 4K/8K UHD
 - Hologram
 - VR/AR (Virtual/Augmented Reality)

Low Latency Services
- Ultra-high reliability/low latency
 - Tactile Internet
 - Remote-control robot/machines

Massive Internet of Things
- Massive connectivity
 - Connected cars (V2X)

Demanding conditions
- Broadband Access in Dense Areas
- High-speed Mobility
 - Massive hot spots /Smart office
 - Moving hot spots /High-speed train

5G Vision & Key Capabilities

Key capabilities of IMT-2020
Inter-relation between the three usage scenarios & Key capabilities

- **Peak Data Rate**: 20 Gbps
- **User Experienced Data Rate**: 100 Mbps
- **Area Traffic Capacity**: 10 Mbps/m²
- **3 Times** Spectrum Efficiency
- **Network Energy Efficiency**: 100 Times
- **Mobility**: 500 km/h
- **Connection Density**: 10⁶ per km² (1 per m²)
- **Latency**: 1 msec (Radio Interface)

[Note] Each of the three usage scenarios does not need to meet all the Key Capabilities
Mobile traffic Growth: 57% CAGR (compound annual growth rate)
- 2015: 4.2 EB (Exa bytes), 2019: 24.3 EB (exa bytes)
- 10x traffic growth in next 5 years
- Worldwide 4G LTE subscriber: ~$1.8 billion in 2020 (25% of world population)
- 5x growth in 5 years
- 5G prototype service in 2018, commercial service in 2020

Mobile network Capex
- Average Capex $35 billion (Y2014~Y2018)
- Revenue growth: 2%
- Big gap between traffic growth and revenue growth
What is C-RAN?

기지국의 진화

Conventional Architectures
- Standard BS
- BBU Remoted

Cloud RAN Architectures
- BBU Centralized
- Intra BBU Pooling+CoMP
- Inter BBU Pooling+CoMP

Possible future Products
- Virtualized or vRAN

Multiple site per BBU

Phase 1 C-RAN
- Site 1
- Site 2
- Multiple site per BBU

Phase 2 C-RAN
- Multiple site per BBU

Future C-RAN
- Virtualized or vRAN

Switching Layer

참고: OFC2015 Workshop “Access Networks for High Speed Applications and Mobile Xhaul”
Radio Access Network: Traditional Architecture

- Standard BS
- Traditional Site
- Site
- BS
- Radio
- BBU
- Backhaul
- Copper
- M-Wave
- Fibre
- Antenna
- Co-axial cable
- Base Band Unit

Radio Access Network: C-RAN

- The current mobile architecture with centralized RAN equipment:
 - Phase 1: BBU centralisation (BBU-RU link based on CPRI/OBSAI)
 - Phase 2: BBU pooling
- Optimal architecture for CoMP RAN features (intra and inter-cell sites).
- Down sizing the form factor of equipment at the cell site
Advantage of C-RAN (ref: http://www.fiercewireless.com/)

- **Capex/Opex Reduction**
 - **CAPEX Reduction 30%**
 - 28.33
 - 8.29
 - 36.14
 - 5.47
 - 15.49
 - **OPEX Reduction 53%**
 - 59.6
 - 8.5
 - 31.9
 - 12.1
 - 51.7

- **In-building DAS network**
 - **DAS (distributed antenna system)**
 - **Antennas**
 - **RRHs**
 - **Central Office**
 - **IP/MPLS network**

- **Fronthaul**
 - **CCU (Central Control Unit)**
 - **DU (Data Unit)**
 - **RU (Remote Unit)**

- **Backhaul**

- **In-building DAS**
 - **Antenna sites**
 - **Fronthaul**
 - **Backhaul**

- **모바일용 광인프라 기술**
 - **인도어 DAS 정의**: 건물내 무선 서비스 제공을 위해 호스트장치에 접속된 공간적으로 분리된 다수의 안테나 네트워크
 - **인도어 DAS 역할**: 다수의 안테나를 공간적으로 분산시켜 실내 환경의 높은 트래픽 용량 문제와 음영지역 해소
 - **인도어 DAS 기술현황**: 국내 4G망은 디지털 샘플링 방식 기반의 광전송 기술을 적용한 사업자별로 독립된 망을 운용

- **Fronthaul 정의**: C-RAN 구조의 이동통신 기지국에서 BBU (DU) 와 RRH (RU)를 연결하는 광 전송망을 지칭
- **Fronthaul 역할**: 모바일 가입자의 음성 및 데이터를 RRU에서 모아 BBU가 위치하는 전화국으로 전달
- **Fronthaul 기술현황**: 현재 국내 LTE 기반의 4G망에서는 CPRI & OBSAI 와 같은 디지털 방식의 광전송 기술을 적용
5G Key Technologies

The Coming 5G

- **100Gbps**: The ultimate 5G
- **25Gbps**: 5G+
- **2Gbps**: First 5G
- **1Gbps**: 4G Adv

- Mm Waves
- High bandwidth
- Full Massive MIMO

- 700MHz (wide range of coverage)
- 3.5GHz with Massive MIMO
- Ultra Low latency

- More Carrier Aggregation
- 256 QAM
- MIMO 4*4

Expected peak cell site throughput

Time
Mobile fronthaul

Speed Limitation of Fronthaul

<table>
<thead>
<tr>
<th>Type</th>
<th>Data-rate</th>
<th>Required data-traffic (CPRI-formatted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE (20MHz) 2x2 MIMO</td>
<td>0.15 Gb/s</td>
<td>((2^{\text{antenna}}) x 30.72 Msp (sample rate) x 16 (bit/sample) x 2 (IQ) x 1.25 (8B/10B)) = 2.45 Gb/s</td>
</tr>
<tr>
<td>5G (125MHz) 2x2 MIMO, SBA</td>
<td>5 Gb/s</td>
<td>((2^{\text{antenna}}) x 8 (FA) x 184.3 Ms (sample rate) x 16 (bit/sample) x 2 (IQ) x 1.25 (8B/10B)) = 117.95 Gb/s</td>
</tr>
<tr>
<td>5G (125MHz) 4x4 MIMO, SBA</td>
<td>10 Gb/s</td>
<td>((4^{\text{antenna}}) x 8 (FA) x 184.3 Ms (sample rate) x 16 (bit/sample) x 2 (IQ) x 1.25 (8B/10B)) = 235.9 Gb/s</td>
</tr>
<tr>
<td>5G (125MHz) 8x8 MIMO, SBA</td>
<td>20 Gb/s</td>
<td>((8^{\text{antenna}}) x 8 (FA) x 184.3 Ms (sample rate) x 16 (bit/sample) x 2 (IQ) x 1.25 (8B/10B)) = 471.8 Gb/s</td>
</tr>
</tbody>
</table>

5G 를 위한 광액세스 기술

5G Vision from IMT-2020
“Information a finger away, everything in touch”

- **Speed**: 1000X (20Gbps)
- **Latency**: Less than 1ms
- **Capacity**: 1000X (Capacity/km²)
- **Energy**: 1000X Reduce

3GPP Family Technology Evolution

---|---|---|---|---|---
GSM | GPRS | EDGE | HSPA | HSPA+ | LTE | LTE-A

Distributed-RAN

Cost-effective approaches for infrastructure will be very important
5G Field Test 1
5G를 위한 광액세스 후보 기술

<table>
<thead>
<tr>
<th>기술 분류</th>
<th>Requirement</th>
<th>Approach</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>Capacity Increase</td>
<td>Large Capacity Transmission</td>
<td></td>
</tr>
<tr>
<td>Latency</td>
<td>Data Reduction</td>
<td>Data Compression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Function Split</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Technology</td>
<td>Analog RoF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast Signal Processing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPRI 기반 모바일 프론트홀

CPRI (Common Public Radio Interface)

무선 장비 제어기(Radio Equipment Controller, REC)에서 무선 장비(Radio Equipment, RE) 사이의 기지국간 디지털 접속을 정의한 규격

- CRPI 규격은 현재 버전 7까지 완료되었으며, 24.3Gbps (option 10) 까지 정의
- 광링크의 전송속도를 줄이기 위해 IQ data 압축기술이 연구되고 있으며, 전체의 93.75%를 차지하는 IQ data sample을 대상으로 함.

![CPRI Interface](image)

![CPRI Protocol](image)
IQ Data Compression

- CPRI frame: IQ data (93.7% of total data), control, timing sync
- Requirement of IQ data compression
 - Compression ratio: ~ 50%
 - Delay: < 20 μs
 - EVM degradation: < 3%

CPRI Protocol Overview

1. **1st step: IQ Data Down-sampling**
 - Original IQ data
 - Down-sampled IQ data

2. **2nd step: IQ bit width reduction**
 - Compressed IQ data

CPRI Compression Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Concept</th>
<th>Pros & Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Step</td>
<td>Down sampling</td>
<td>+ : high compression quality & relatively low EVM degradation</td>
</tr>
<tr>
<td>2nd Step</td>
<td>Non-linear quantization</td>
<td>+ : best in EVM degradation</td>
</tr>
<tr>
<td></td>
<td>Block scaling</td>
<td>- : worst in FPGA logic utilization</td>
</tr>
<tr>
<td></td>
<td>Partial bit sampling</td>
<td>+ : good in EVM degradation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- : need a time for processing time</td>
</tr>
<tr>
<td></td>
<td>Original signal</td>
<td>+ : best performance for latency & FPGA logic utilization, relatively good in EVM degradation</td>
</tr>
<tr>
<td></td>
<td>Lower-bit decimation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compress signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decompress signal</td>
<td></td>
</tr>
</tbody>
</table>

IQ Data Compression

- 2nd step: IQ bit width reduction
- Data Compression Ratio: ~50%
CPRI Compression Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Standardization (ORI)</th>
<th>Real Field (Telco needs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Ratio</td>
<td>> 50 % (based I/Q data)</td>
<td>50 % (based CPRI)</td>
</tr>
<tr>
<td>EVM degradation</td>
<td>< 3 %</td>
<td>< 0.5 % *</td>
</tr>
<tr>
<td>One-way latency</td>
<td>< 100 μsec (preferably 20 μsec)</td>
<td>< 10 μsec</td>
</tr>
</tbody>
</table>

CPRI Compression System

- VSG
- Software Development Kit & Integrated Logic Analyzer
- FPGA board #1, #2
- VSA
- SFP+ #1, #2
- 20km of SMF

[Photograph test-bed for IQ data compression/decompression]
EVM degradation

![EVM degradation graph](image)

- EVM = 0.70%, \(\Delta \text{EVM} = 0.55% \)
- EVM = 1.64%, \(\Delta \text{EVM} = 0.16% \)
- EVM = 2.89%, \(\Delta \text{EVM} = 0.08% \)

[Measured EVM degradation versus EVM of input signal, and constellation of 64QAM]

(PB: partial bit sampling, BS: block scaling, NL: non-linear quantization)

One-way latency

![One-way latency graph](image)

[One-way latency of additional compression+decompression]
Function Split & Virtual Access Network

- The reach extension of the fronthaul: natively possible due to SFP
- More data processing capacity of BBU

Software in a server Adherent to hardware

Digital Signal Analog Signal

Upper Layer MAC OFDM PHY CPRI Framer/Deframer CPRI Framer/Deframer ADC

BBU (DU) RRH (RU)

MAC/PHY 기능 재분리를 통한 데이터 저감

참고: Keiji Tanaka et al., "Next-Generation Optical Access Networks for C-RAN", OFC 2015 LA

상대적 데이터율 1612 121
1.2~1.5

-Extraction of User Data -Header Removal -8B/10B coding

-MAC layer overhead
DU Function Split 및 종류

DU에 위치하든 PHY/MAC 기능을 RRH로 이동시켜 기지국을 운용하는 기술

Trade off

1. split within L1
 - DU-RU간 “PHY 계층 분리”
 - CPRI Fronthaul
 - Function Split
 - 5 Gb/s ~400 us latency

2. split within L2
 - DU-RU간 “MAC 계층 분리”
 - CPRI Fronthaul
 - Function Split
 - 1 Gb/s ~400 us latency

IP Backhaul

- CPRI Fronthaul
- 100 Mbps ~4 ms latency

* Bandwidth는 LTE-A (20 MHz, 2 FA, 2 Ayrıca 기준으로 산정)

Antenna Configuration and RAN Split

DEFINE TRANSPORT REQUIREMENTS

Functional RAN split has significant impact on required transport interface:
e.g. small cell, one sector, 125 MHz - 256 QAM - 16x16 MIMO

<table>
<thead>
<tr>
<th>Data rate (Gb/s)</th>
<th>Split I</th>
<th>Split II</th>
<th>Split III</th>
<th>Split IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>18</td>
<td>36</td>
<td>43</td>
<td>78</td>
</tr>
<tr>
<td>Transport (Gb/s)</td>
<td>25</td>
<td>40</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*Source: “Small Cell Virtualization Functional Splits and Use Cases” by SmallCell Forum
5G Field Test 2

Gigabit data per second
Transport Options for new 5G Access Points

- IP connection
- Dedicated optical fiber
- Optical PON
- XG_fast
- XG-cable
- mmWave point-to-point systems

Passive Optical Network (PON)

- No needs to use electrical power btw. central office and subscriber
- PON consists with OLT, ONT, and power splitter or WDM filter at Remote node
Sub-Channel CWDM Technology

- Colored dual and multi sub-channel CWDM can support up to 108 WLs.
- To get more wavelength resource in the limited fiber facilities for beyond 4G and 5G mobile fronthaul, we need to develop the evolving technology.
- Colorless CWDM sub-channel technology with 0.8nm channel spacing is the one of promising solutions.

Dual Sub-Channel/Multi Sub-Channel

- **Dual sub-channel CWDM**
 - Colored DML
 - OTX
 - OTX: Optical Transceiver
 - OTX: Colored DML

- **Multi sub-channel CWDM**
 - Colored or Colorless DML
 - OTX
 - OTX: TFF or AWG
 - OTX: Colored or Colorless DML
Colorless Operation

- Simple structure with F-P LD + LC tunable filter
- Wide tuning range of 40nm to cover 2 CWDM bands
- Low cost wide range wavelength locker inside TOSA
- 100/50GHz channel spacing
- Up to 10Gbps@20km with pre-dispersion compensator
- High optical power of +3 ~ +7dBm by direct modulation
- Needs only 18 or 9 different F-P LDs to cover all CWDM band

NG-PON2

NG-PON2 = 40 Gigabit Capable Multi-Wavelength PON System

- Ch. # ⇒ Base = 1 – 4 TWDM (TDM/WDM) and Option = up to 8
- PTP WDM (Ch# 8)
- TWDM Ch. Rates ⇒ Base = 10/2.5G and Options =10/10G and 2.5/2.5G
- PTP WDM Ch. Rates ⇒ 1G, 2.5G and 10G classes

ONUs are colourless and can tune to any assigned Channel
Incremental Upgrade (Pay-as-you-grow)

Incremental capacity can be added by provisioning additional NG-PON2 OLT channels. The ONUs are colourless and can tune to any NG-PON2 channel. This can also allow channel capacity management by redistributing ONUs across the available NG-PON2 channels.

FSAN Standard Roadmap

Disruptive technologies, innovative R&D

Peak Rates > 10G

2021+

Future Optical Access System (FOAS)

Industry Trends 2016+

SDN
NFV
5G
IoT
Convergence
100G-EPON timeline

IEEE P802.3ca Timeline

- 802.3 interim meeting
- GGF20 working group

100G-EPON

IEEE

100G OLT

Power Splitter

\[\lambda_0 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\lambda_3 \]

25G ONU

50G ONU

100G ONU
<table>
<thead>
<tr>
<th></th>
<th>NG-PON2</th>
<th>100G EPON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard body</td>
<td>ITU-T SG15</td>
<td>IEEE 802</td>
</tr>
<tr>
<td>Standard</td>
<td>G.989.1,2,3</td>
<td>IEEE802.3ca</td>
</tr>
<tr>
<td>PON capacity</td>
<td>Dn: 4x10G (8x10G)</td>
<td>Dn: 4x25G</td>
</tr>
<tr>
<td></td>
<td>Up: 4x2.5G (8x10G)</td>
<td>Up: 4x25G (or 10G)</td>
</tr>
<tr>
<td>PtP WDM-PON</td>
<td>Included</td>
<td>Maybe not</td>
</tr>
<tr>
<td>Max Capacity of ONU</td>
<td>10G / 2.5G</td>
<td>100G / 100G</td>
</tr>
<tr>
<td>Channel bonding</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Wavelength Plan</td>
<td>Dn: L+band, Up: C-band</td>
<td>Not yet</td>
</tr>
<tr>
<td>Tunable</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Co-existence</td>
<td>G-PON, XG-PON</td>
<td>10G-EPON</td>
</tr>
</tbody>
</table>

100G EPON Homepage

IEEE P802.3ca 100G-EPON Task Force

Physical Layer Specifications and Management Parameters

Guiding Documents

- IEEE 802.3ca PAM
 (Approved on December 5, 2015)
- Criteria for Standards Development (CSG)
 (Approved on November 10, 2015)
- Objectives
 (Approved on November 12, 2015)
- IEEE 802.3ca Timeline
 (Approved on January 21, 2016)
- 802.3 WG Operating Rules

Standards Development Tools

- Submit a contribution & request agenda time
- PowerPoint (pptx) template
- 802.3 Tools and Resources
- Baseline Proposal & Technical Matters
- 25 Gbit Channel Model for PON
- Wavelength-induced skew calculator
- 100G Management & Control Parameters

Meeting Archives

- May 2016, Whistler, BC, Canada
- March 2016, Naga, China
- January 2016, Atlanta, GA, USA

Email Reflector

- Subscribe / Unsubscribe
- View archive

Study Group Meeting Archives

- November 2015, Dallas, TX USA
- September 2015, Boston Springs, IL, USA
- July 2015, Waikiki, HI USA - CF3 presentation

Deadline for requesting time on the agenda: Monday, July 18, 2016 4pm. To request the agenda time, follow these instructions. Please include final draft of PDF file when requesting agenda time.

Minutes of the Whistler meeting are now available in the [May 2016 Archives](#).

The next face-to-face meeting of this Task Force will occur on July 25-27, 2016. Meeting times during that week are expected to be 1:00 pm to 6:00 pm on July 25, and 8:00 am to 6:00 pm on July 26 and 27, although final times depend on level of contributions. For meeting location and logistics, see the [IEEE 802.3 Ethernet](#) web page.
25G PON 프로토타입 시험

100G EPON Prototype Research Results

- https://www.aseapublishing.org/ae/abstract?n=ae-24-13-13991

상하향 성능

1Gbpsburst mode upstream

QoS

Contents

5G & C-RAN

전송 용량 저감 기술

광액세스 기술

Indoor Analog RoF 기술
전체 Mobile Traffic의 80%가 Indoor 환경에서 발생
모바일 서비스(SNS 등)은 의사전달 수단에서 개인의 사회적 행동의 도구로 발전
현재는 Data 속도 저하 및 음영지역 해소 필요
Indoor 환경에서 25년 이상 사용되어 검증되고, 급격한 발전이 예상되는 solution은 DAS.
현재 DAS가 적용된 site는 수 만 국소 이상이며, 향후 2023년까지 약 1억 site로 증가 예상

현재의 디지털 DAS 기술 현황

디지털 DAS 구조

디지털 DAS의 광전송 용량 증가

~ 300Gbps
10Gbps
8Gbps
6Gbps
8Gbps
2Gbps
Bandwidth Efficient IFoF based Optical Access

<table>
<thead>
<tr>
<th>Type</th>
<th>Properties</th>
</tr>
</thead>
</table>
| Radio frequency over Fiber (RFoF) | - Transmission of mobile signal on the RF frequency as air interface through fronthaul link
- Low implementation cost and complexity in RU
- Requires many wavelength for increasing data-rate |
| Intermediate Frequency over Fiber (IFoF) | - Transmission of mobile signal on intermediate frequency through fronthaul link
- Bandwidth efficient transmission
- Flexible bandwidth allocation
- Increases implementation cost and complexity in RU |

Millimeter wave 5G & Indoor

- 기지국 최대 20Gbps
- 단말 1 Gbps
- 최대 32 FA, 8x8 MIMO 지원
- 최대 전송거리 5km, 최대 8 분기 수용
- 5G 이동통신 서비스 음영지역 해소

밀리미터파 5G 이동통신 시스템

밀리미터파 5G & Indoor DAS

밀리미터파 5G 이동통신시스템 신호 사양

125 MHz x 8FA = 1GHz

Air: 27.5GHz
125 MHz
2.7GHz

1.7GHz
5G 프로토타입 성능 시험

Mobile Station Platform (User equipment)
- Terminal Unit
- L1/L2/L3 Board
- L1 FPGA Board
- RF/IF Module

Base Station Platform (BBU)
- Clock Board
- L1/L2/L3 Board
- L1 FPGA Board
- IF Module

Video Streaming
Performance Evaluator

Audio Optical Transceiver

LD Driver
LD
LNA
PD

[Block diagram]

Analog Optical Transceiver

Analog optical transceiver

Frequency response

S21 (dB)

S21

< ±1 dB

[Analog optical transceiver]

[Block diagram]

[Frequency response]
Supporting giga-bit mobile service with 28 GHz mmWave 5G prototype
Achieving peak data-rate up to 1.5 Gb/s per each user
감사합니다